Monday 17 July 2017

Moving Average Process Autocovariance


Analisis Time Series tsa statsmodels. tsa berisi kelas dan fungsi model yang berguna untuk analisis deret waktu. Ini saat ini mencakup model autoregresif univariat (AR), model vektor autoregresif (VAR) dan model rata-rata pergerakan autoregresif univariat (ARMA). Ini juga mencakup statistik deskriptif untuk deret waktu, misalnya autokorelasi, fungsi autokorelasi parsial dan periodogram, serta sifat teoritis ARMA atau proses terkait lainnya. Ini juga mencakup metode untuk bekerja dengan autoregressive dan moving average lag-polynomials. Selain itu, tes statistik terkait dan beberapa fungsi pembantu berguna tersedia. Estimasi dilakukan dengan tepat atau bersyarat Maximum Likelihood atau conditional least-squares, baik dengan menggunakan Kalman Filter atau filter langsung. Saat ini, fungsi dan kelas harus diimpor dari modul yang sesuai, namun kelas utama akan tersedia di ruang nama statsmodels. tsa. Struktur modul ada di dalam statsmodels. tsa adalah stattools. Sifat empiris dan tes, asf, pacf, granger-causality, adf unit root test, uji ljung-box dan lain-lain. Armodel Proses autoregresif univariat, estimasi dengan kemungkinan maksimum bersyarat dan tepat dan arimamodel bersyarat minimal. Proses ARMA univariat, estimasi dengan kemungkinan maksimum bersyarat dan tepat dan vektor kuadrat bersyarat minimum, var. Model estimasi vektor autoregresif (VAR), analisis respon impuls, variasi dekomposisi varians error, dan alat visualisasi data kalmanf. Kelas estimasi ARMA dan model lainnya dengan MLE yang tepat menggunakan armotip Kalman Filter. Sifat proses arma dengan parameter yang diberikan, ini termasuk alat untuk mengkonversi antara representasi ARMA, MA dan AR serta acf, pacf, kerapatan spektral, fungsi respon impuls dan sandbox. tsa. fftarma serupa. Mirip dengan armaprocess tapi bekerja di domain frekuensi tsatools. Fungsi pembantu tambahan, untuk membuat array dari variabel tertinggal, membuat regresor untuk tren, detrend dan sejenisnya. Filter. Fungsi penolong untuk menyaring rangkaian waktu Beberapa fungsi tambahan yang juga berguna untuk analisis deret waktu ada di bagian statsmodel lain, misalnya uji statistik tambahan. Beberapa fungsi terkait juga tersedia di matplotlib, nitime, dan scikits. talkbox. Fungsi tersebut dirancang lebih untuk penggunaan dalam pemrosesan sinyal di mana deret waktu yang lebih lama tersedia dan bekerja lebih sering di domain frekuensi. Statistik Deskriptif dan Pengujian stattools. acovf (x, tidak bias, demean, fft) Fungsi Autokorelasi Perhatikan bahwa 0 adalah varians dari proses stokastik. Fungsi autocovariance pada lag k. Untuk k 0, deret waktu ditentukan oleh fungsi autokorelasi (ACF) pada lag k. Untuk k 0, deret waktu didefinisikan oleh varians dari deret waktu adalah r 0. Sebuah plot r k terhadap k dikenal sebagai correlogram. Pengamatan. Definisi autocovariance yang diberikan di atas sedikit berbeda dari definisi kovarians yang biasa antara 1. , Y n-k dan k 1. , Y n dalam dua hal: (1) kita membagi dengan n bukan nk dan kita kurangi keseluruhan mean dan bukan mean 1. , Y n-k dan k 1. , Masing-masing. Untuk nilai n yang besar berkenaan dengan k. Perbedaannya akan kecil. Contoh 1. Hitung s 2 dan r 2 untuk data di kisaran B4: B19 Gambar 1. Gambar 1 ACF pada lag 2 Rumus untuk menghitung s 2 dan r 2 menggunakan fungsi COVARIANCE. S dan CORREL yang biasa ditunjukkan pada sel G4 dan G5. Rumus untuk s 0. S 2 dan r 2 dari Definisi 2 ditunjukkan pada sel G8, G11 dan G12 (bersama dengan formula alternatif di G13). Perhatikan bahwa nilai untuk s 2 di sel E4 dan E11 tidak terlalu berbeda, demikian juga nilai r 2 yang ditunjukkan pada sel E5 dan E12 semakin besar sampel, semakin besar kemungkinan nilai-nilai ini serupa Fungsi Statistik Nyata. Paket Sumber Daya Real Statis memasok fungsi berikut: ACF (R1, k) nilai ACF pada lag k untuk deret waktu di kisaran R1 ACVF (R1, k) autcovariance pada lag k untuk deret waktu di kisaran R1 Perhatikan bahwa ACF (R1, k) setara dengan SUMPRODUCT (R1,0,0, COUNT (R1) - k) - AVERAGE (R1), OFFSET (R1, k, 0, COUNT (R1) - k) - AVERAGE (R1 )) Pengamatan DEVSQ (R1). Ada keuntungan teoritis untuk menggunakan pembagian dengan n bukan nk dalam definisi s k. Yaitu bahwa kovarians dan matriks korelasi akan selalu definitif tidak negatif (lihat Matriks Definitif Positif). Pengamatan. Meskipun definisi autokorelasi sedikit berbeda dengan korelasi, k (atau r k) masih membutuhkan nilai antara -1 dan 1, seperti yang kita lihat di Properti 2. Contoh 2. Tentukan ACF untuk lag 1 sampai 10 untuk rata-rata penutupan Dow Jones untuk bulan Oktober 2015, seperti yang ditunjukkan pada kolom A dan B pada Gambar 2 dan buat korelogram yang sesuai. Hasilnya ditunjukkan pada Gambar 2. Nilai pada kolom E dihitung dengan menempatkan rumus ACF (B4: B25, D5) pada sel E5, menyoroti rentang E5: E14 dan menekan Ctrl-D. Gambar 2 ACF dan Correlogram Seperti dapat dilihat dari nilai pada kolom E atau grafik, nilai ACF turun perlahan menuju nol. Ini khas proses autoregresif. Pengamatan. Aturan praktis adalah melakukan proses di atas untuk lag 1 ke n 3 atau n 4, yang untuk data di atas adalah 224 6 atau 223 7. Tujuan kami adalah untuk melihat apakah saat ini ACF signifikan (secara statistik berbeda Dari nol). Kita bisa melakukan ini dengan menggunakan properti berikut. Properti 3 (Bartlett): Dalam contoh besar, jika deret waktu ukuran n murni acak maka untuk semua k Contoh 3. Tentukan apakah ACF pada lag 7 signifikan untuk data dari Contoh 2. Seperti yang dapat kita lihat dari Gambar 3, nilai kritis untuk pengujian di Property 3 adalah 0,417866. Karena r 7.303809 lt .417866, kita simpulkan bahwa tidak berbeda secara signifikan dari nol. Gambar 3 Uji Bartletts Perhatikan bahwa nilai k sampai dengan 5 signifikan dan yang lebih tinggi dari 5 tidak signifikan. Versi Property 4 yang lebih bertenaga statistik, terutama untuk sampel yang lebih kecil, diberikan oleh properti berikutnya. Contoh 4. Gunakan statistik Box-Pierce dan Ljung-Box untuk menentukan apakah nilai ACF pada Contoh 2 secara statistik sama dengan nol untuk semua lag kurang dari atau sama dengan 5 (hipotesis nol). Hasilnya ditunjukkan pada Gambar 4. Gambar 4 Uji Box-Pierce dan Ljung-Box Kami melihat dari pengujian ini bahwa ACF (k) berbeda secara signifikan dari nol untuk setidaknya satu k 5, yang konsisten dengan correlogram pada Gambar 2. Fungsi Statistik Riil. The Real Statistics Resource Pack menyediakan fungsi berikut untuk melakukan tes yang dijelaskan oleh properti di atas. BARTEST (r, n, lag) p-value dari uji Bartletts untuk koefisien korelasi r berdasarkan deret waktu n ukuran lag tertentu. BARTEST (R1 lag) BARTEST (r, n, lag) dimana n jumlah elemen pada range R1 dan r ACF (R1, lag) PIERCE (R1 ,, lag) Statistik Box-Pierce Q untuk range R1 dan lag yang ditentukan BPTEST (R1 ,, lag) p-value untuk uji Box-Pierce untuk range R1 dan lag lag LJUNG (R1 ,, lag) statistik Ljung-Box Q untuk range R1 dan lag yang ditentukan LBTEST (R1 ,, lag) p - value untuk uji Ljung-Box untuk range R1 dan lag yang ditentukan Pada fungsi di atas dimana argumen kedua hilang, pengujian dilakukan dengan menggunakan koefisien autokorelasi (ACF). Jika nilai yang diberikan adalah 1 atau pacf maka pengujian dilakukan dengan menggunakan koefisien autokorelasi parsial (PACF) seperti yang dijelaskan pada bagian selanjutnya. Sebenarnya jika argumen kedua mengambil nilai apapun kecuali 1 atau pacf, maka nilai ACF digunakan. Misalnya. BARTEST (.303809,22,7) .07708 untuk Contoh 3 dan LBTEST (B4: B25, acf, 5) 1.81E-06 untuk Contoh 4.GEOS 585A, Analisis Seri Waktu Terapan Telepon: (520) 621-3457 Faks: (520) 621-8229 Jam kerja Jumat, 1: 00-6: 00 (silahkan email ke pertemuan jadwal) Deskripsi Kursus Alat analisis di domain waktu dan frekuensi diperkenalkan dalam konteks seri waktu sampel. Saya menggunakan dataset dari seri waktu sampel untuk menggambarkan metode, dan mengubah dataset setiap semester kursus ditawarkan. Tahun ini dataset sampel berasal dari proyek NSF mengenai variabilitas snowpack di American River Basin of California. Dataset ini mencakup kronologi ring pohon, indeks iklim, catatan arus sungai, dan rangkaian waktu setara salju yang diukur di stasiun kursus salju. Anda akan mengumpulkan deret waktu Anda sendiri untuk digunakan dalam kursus. Ini mungkin berasal dari proyek penelitian Anda sendiri. Kembali ke Atas Halaman Ini adalah kursus pengantar, dengan penekanan pada aspek praktis dari analisis deret waktu. Metode diperkenalkan secara hierarkis - dimulai dengan grafis terminologi dan eksplorasi, beralih ke statistik deskriptif, dan diakhiri dengan prosedur pemodelan dasar. Topik meliputi detrending, filtering, autoregressive modeling, spektral analysis dan regression. Anda menghabiskan dua minggu pertama menginstal Matlab di laptop Anda, mendapatkan pengenalan dasar tentang Matlab, dan mengumpulkan dataset Anda untuk seri waktu kursus. Dua belas topik, atau pelajaran kemudian ditutup, masing-masing diberikan seminggu, atau dua periode kelas. Dua belas tugas kelas mengikuti topik. Penugasan terdiri dari penerapan metode dengan menjalankan skrip Matlab pra-tulis (program) pada deret waktu Anda dan menafsirkan hasilnya. Kursus 3 kredit untuk siswa di kampus di University of Arizona di Tucson, dan 1 kredit untuk siswa online. Setiap deret waktu dengan kenaikan waktu konstan (mis., Bulan, bulan, tahun) adalah kandidat untuk digunakan dalam kursus. Contohnya adalah pengukuran curah hujan setiap hari, aliran arus total musiman, suhu udara rata-rata musim panas, indeks pertumbuhan pohon tahunan, indeks suhu permukaan laut, dan kenaikan harian semak semak. Sebagai hasil dari mengikuti kursus, Anda harus: memahami konsep dan terminologi time series dasar dapat memilih metode time series yang sesuai dengan tujuan dapat mengevaluasi secara kritis literatur ilmiah yang menggunakan metode time series yang dibahas telah meningkatkan pemahaman tentang sifat deret waktu dari Dataset sendiri dapat ringkas merangkum hasil analisis deret waktu secara tertulis Prasyarat Kursus statistik pendahuluan Akses ke komputer laptop yang mampu menginstal Matlab di dalamnya Izin para instruktur (mahasiswa sarjana dan mahasiswa online) Persyaratan Lain Jika Anda berada di Universitas Mahasiswa Arizona (UA) di kampus di Tucson, Anda memiliki akses ke Matlab dan kotak peralatan yang dibutuhkan melalui lisensi situs UA karena tidak memerlukan perangkat lunak biaya. Tidak ada pengalaman sebelumnya dengan Matlab yang dibutuhkan, dan pemrograman komputer bukan bagian dari kursus. Jika Anda online, bukan di kampus UA, Anda akan bisa mengikuti kursus semester musim semi 2017 sebagai iCourse. Anda harus memastikan bahwa Anda memiliki akses ke Matlab dan kotak peralatan yang diperlukan (lihat di bawah) di lokasi Anda. Akses ke internet. Tidak ada pertukaran kertas dalam kursus. Catatan dan tugas ditukar secara elektronik dan selesai diserahkan secara elektronik melalui sistem University of Arizona Desire2Learn (D2L). Versi matlab Saya memperbarui skrip dan fungsi sekarang dan kemudian menggunakan rilis lisensi situs saat ini dari Matlab, dan pembaruannya mungkin menggunakan fitur Matlab yang tidak tersedia dalam rilis Matlab sebelumnya. Untuk 2017, saya menggunakan Matlab Version 9.1.0.441655 (R2016b). Jika Anda menggunakan rilis sebelumnya, pastikan itu Matlab Release 2007b atau lebih tinggi. Selain paket Matlab utama, empat toolboxes digunakan: Statistik, Pengolahan Sinyal, Identifikasi Sistem, dan Spline (Matlab Release 2010a atau sebelumnya), atau Curve Fitting (Matlab Release 2010b atau yang lebih baru) Ketersediaan Kursus ini ditawarkan di Semester Musim Semi Setiap tahun (2015, 2017, dst.). Ini terbuka untuk mahasiswa pascasarjana dan mungkin juga diambil oleh para manula senior dengan izin instruktur. Pendaftaran siswa UA tinggal ditutup pada usia 18 untuk Semester Musim Semi 2017. Sejumlah kecil siswa online juga biasanya diakomodasi dengan menawarkan kursus dengan berbagai cara. Caranya sekarang adalah tempat iCourse yang dijelaskan di atas. Kembali ke Atas Halaman Garis Besar Kursus (Pelajaran) Jadwal biasanya memungkinkan sekitar dua minggu untuk mengumpulkan data dan menjadi terbiasa dengan Matlab. Kemudian satu minggu (dua periode kelas) dikhususkan untuk masing-masing dari 12 pelajaran atau topik. Kelas bertemu pada hari Selasa dan Kamis. Topik baru diperkenalkan pada hari Selasa, dan dilanjutkan pada hari Kamis berikutnya. Kelas hari Kamis diakhiri dengan sebuah tugas dan demonstrasi menjalankan skrip pada data sampel saya. Tugasnya jatuh tempo (harus diunggah oleh Anda ke D2L) sebelum kelas pada hari Selasa berikutnya. 12 jam pertama kelas hari Selasa itu digunakan untuk penilaian diri yang dipandu dan penilaian tugas dan pengunggahan tugas dinilai (dinilai) ke D2L. Sisanya 45 menit digunakan untuk mengenalkan topik selanjutnya. Anda harus membawa laptop Anda ke kelas pada hari Selasa. 12 pelajaran atau topik yang dibahas dalam kursus tercantum dalam garis besar kelas. Siswa online diharapkan mengikuti jadwal penyerahan tugas yang sama dengan siswa yang tinggal, namun tidak memiliki akses ke ceramah. Tugas yang dikirim dari siswa online tidak dinilai sendiri, namun dinilai oleh saya. Siswa online harus memiliki akses ke D2L untuk mengirimkan tugas. Semester musim semi 2017 Kelas bertemu dua kali seminggu selama 75 menit, 9: 00-10: 15 AM TTh, di kamar 424 (Ruang Konferensi) Gedung Cincin Pohon Bryant Bannister (bangunan 45B). Hari pertama kelas adalah 12 Januari (Kam). Hari terakhir kelas adalah 2 Mei (sel). Tidak ada kelas selama minggu Spring Break (Mar 11-19). Anda menganalisis data pilihan Anda sendiri di kelas tugas. Sebagaimana tercantum dalam ikhtisar kursus. Ada banyak fleksibilitas dalam pemilihan deret waktu. Saya akan membuat katalog rangkaian waktu yang sesuai, tapi yang terbaik adalah memfokuskan kursus pada kumpulan data Anda sendiri. Tugas pertama melibatkan menjalankan skrip yang menyimpan data dan metadata yang telah Anda kumpulkan di file mat, format asli Matlab. Tugas selanjutnya menarik data dari file mat untuk analisis deret waktu. Penugasan 12 topik tersebut dibahas secara berurutan sepanjang semester, yang mencakup sekitar 15 minggu. Tentang dua minggu pertama (pertemuan kelas 4-5) digunakan untuk beberapa bahan pengantar, menentukan dan mengumpulkan deret waktu Anda, dan menyiapkan Matlab di laptop Anda. Setiap minggu setelah itu dikhususkan untuk salah satu dari 12 topik topik. Setiap tugas terdiri dari membaca bab catatan, menjalankan skrip Matlab terkait yang menerapkan metode analisis time series pilihan ke data Anda, dan menuliskan interpretasi Anda terhadap hasilnya. Tugas memerlukan pemahaman tentang topik kuliah serta kemampuan untuk menggunakan komputer dan perangkat lunak. Anda mengirimkan tugas dengan mengunggahnya ke D2L sebelum kelas Selasa saat topik berikutnya diperkenalkan. Semester pertama kelas Selasa itu digunakan untuk penilaian diri yang dipandu oleh penugasan, termasuk mengunggah PDF dengan self-grade ke D2L. Saya memeriksa satu atau beberapa tugas yang dinilai sendiri setiap minggu (dengan seleksi acak), dan mungkin mengubah nilainya. Untuk mengetahui cara mengakses tugas, klik file tugas. Bacaan terdiri dari catatan kelas. Ada dua belas set. pdf mencatat file. Satu untuk masing-masing topik kursus. File. pdf ini dapat diakses melalui Web. Informasi lebih lanjut tentang berbagai topik yang dibahas dalam kursus dapat ditemukan melalui referensi yang tercantum di akhir setiap bab catatan kelas. Kelas didasarkan sepenuhnya pada kinerja pada tugas, masing-masing bernilai 10 poin. Tidak ada ujian. Jumlah total poin yang mungkin untuk 12 topik adalah 12 x 10 120. Nilai A yang dibutuhkan 90-100 persen dari poin yang mungkin. Nilai B membutuhkan 80-90 persen. Nilai C membutuhkan 70-80 persen, dan sebagainya. Nilai diberikan dengan penilaian diri yang dipandu oleh rubrik yang disajikan di kelas. Jumlah poin yang diterima harus ditandai di bagian atas setiap tugas bergradasi. Markup penugasan Anda harus menyertakan anotasi dari setiap penurunan harga dengan mengacu pada rubrik yang diilustrasikan di kelas (misalnya -0,5, rp3 menunjukkan pengurangan sebesar -0,5 karena kesalahan yang terkait dengan rubrik poin 3) Tugas, diberikan di kelas pada hari Kamis, akan Karena (diunggah ke D2L oleh Anda) sebelum memulai kelas pada hari Selasa berikutnya. Setengah jam pertama periode pertemuan hari Selasa akan didedikasikan untuk presentasi rubrik penilaian, penilaian sendiri atas penugasan yang telah selesai, dan pengunggahan tugas yang dinilai sendiri ke D2L. Jadwal ini memberi Anda waktu 4 hari untuk menyelesaikan dan mengunggah tugas ke D2L sebelum pukul 09:00 hari Selasa. D2L melacak waktu penugasan diupload, dan tidak ada hukuman yang dinilai selama diunggah sebelum pukul 09:00 pada hari Selasa tanggal jatuh tempo. Jika Anda memiliki beberapa jadwal yang harus jauh dari kelas (misalnya, kehadiran di sebuah konferensi), Anda bertanggung jawab untuk mengunggah tugas sebelum pukul 09:00 hari Selasa karena waktunya, dan untuk mengupload versi self-graded pada pukul 10:15 pagi. hari yang sama. Dengan kata lain, jadwalnya sama dengan siswa yang berada di kelas. Jika keadaan darurat muncul (misalnya Anda terkena flu) dan tidak dapat melakukan tugas atau penilaian sesuai jadwal, kirimkan saya email dan kami akan sampai di akomodasi. Jika tidak, denda 5 poin (setengah dari total poin yang tersedia untuk latihan) akan dinilai. Pengenalan data pengorganisasian rangkaian waktu untuk analisis Suatu deret waktu didefinisikan secara luas sebagai serangkaian pengukuran yang dilakukan pada waktu yang berbeda. Beberapa kategori deskriptif dasar deret waktu adalah 1) panjang vs pendek, 2) bahkan langkah waktu vs langkah waktu yang tidak rata, 3) diskrit vs kontinyu, 4) periodik vs aperiodik, 5) stasioner vs nonstasioner, dan 6) univariat vs multivariat . Sifat-sifat ini dan juga tumpang tindih temporal dari beberapa seri, harus dipertimbangkan dalam memilih kumpulan data untuk analisis dalam kursus ini. Anda akan menganalisis rangkaian waktu Anda sendiri di kursus. Langkah pertama adalah memilih seri tersebut dan menyimpannya dalam struktur di file tikar. Keseragaman dalam penyimpanan pada awalnya sangat sesuai untuk kelas ini sehingga perhatian kemudian dapat difokuskan pada pemahaman metode deret waktu, bukan debug kode komputer untuk menyiapkan data untuk analisis. Struktur adalah variabel Matlab yang mirip dengan database sehingga isinya diakses oleh penanda lapangan tekstual. Struktur dapat menyimpan data dari berbagai bentuk. Sebagai contoh, satu bidang mungkin merupakan matriks deret waktu numerik, yang lain mungkin berupa teks yang menjelaskan sumber data, dsb. Dalam tugas pertama Anda akan menjalankan skrip Matlab yang membaca rangkaian waktu dan metadata Anda dari file teks ascii yang Anda siapkan sebelumnya dan Menyimpan data di struktur Matlab dalam file matrik tunggal. Dalam tugas selanjutnya Anda akan menerapkan metode time series ke data dengan menjalankan skrip dan fungsi Matlab yang memuat file mat dan mengoperasikan struktur tersebut. Pilih data sampel yang akan digunakan untuk tugas selama kursus Baca: (1) Notes1.pdf, (2) Persiapan, dapat diakses dari menu bantuan MATLAB Jawab: Jalankan skrip geosa1.m dan jawablah pertanyaan yang tercantum dalam file di a1.pdf Bagaimana membedakan kategori deret waktu Bagaimana cara memulai dan berhenti MATLAB Bagaimana cara memasukkan perintah MATLAB pada command prompt Bagaimana membuat angka di jendela gambar Bagaimana cara mengekspor tokoh ke pengolah kata Anda Perbedaan antara skrip dan fungsi MATLAB Bagaimana cara menjalankan skrip dan fungsi Bentuk variabel struktur MATLAB Bagaimana menerapkan skrip geosa1.m untuk mendapatkan serangkaian rangkaian waktu dan metadata ke dalam struktur MATLAB Distribusi probabilitas deret waktu menggambarkan probabilitas bahwa pengamatan masuk ke dalam kisaran nilai tertentu. Distribusi probabilitas empiris untuk rangkaian waktu dapat dicapai dengan memilah dan memberi peringkat nilai dari seri. Quantiles dan persentil adalah statistik yang berguna yang dapat diambil secara langsung dari distribusi probabilitas empiris. Banyak uji statistik parametrik mengasumsikan deret waktu adalah sampel dari populasi dengan distribusi probabilitas populasi tertentu. Seringkali penduduk dianggap normal. Bab ini menyajikan beberapa definisi dasar, statistik dan plot yang terkait dengan distribusi probabilitas. Sebagai tambahan, sebuah tes (uji Lilliefors) diperkenalkan untuk menguji apakah sampel berasal dari distribusi normal dengan mean dan varians yang tidak ditentukan. Jawaban: Jalankan skrip geosa2.m dan jawab pertanyaan yang tercantum dalam file di a2.pdf Definisi istilah: deret waktu, stasioneritas, kepadatan probabilitas, fungsi distribisi, quantile, spread, lokasi, mean, standar deviasi, dan condong Bagaimana menafsirkan Grafik paling berharga dalam analisis deret waktu - deret seri waktu Bagaimana menafsirkan kotak petak, histogram dan plot probabilitas normal Parameter dan bentuk dari distribusi normal Uji Lilliefors untuk normalitas: deskripsi grafis, asumsi, hipotesis nol dan alternatif Peringatan pada interpretasi Tingkat signifikansi uji statistik ketika deret waktu tidak acak dalam waktu Bagaimana menerapkan geosa2.m untuk memeriksa properti distribusi dari deret waktu dan menguji seri untuk normalitas Autokorelasi mengacu pada korelasi deret waktu dengan nilai masa lalu dan masa depannya sendiri. Autokorelasi juga kadang disebut korelasi tertinggal atau korelasi serial. Yang mengacu pada korelasi antara anggota dari serangkaian angka yang disusun pada waktunya. Autokorelasi positif bisa dianggap sebagai bentuk ketekunan yang spesifik. Kecenderungan sebuah sistem untuk tetap berada dalam keadaan yang sama dari satu pengamatan ke pengamatan berikutnya. Misalnya, kemungkinan besok hujan lebih besar jika hari ini hujan daripada jika hari ini kering. Seri waktu geofisika sering kali autokorelasi karena proses inersia atau carryover dalam sistem fisik. Misalnya, sistem tekanan rendah yang berkembang perlahan dan bergerak di atmosfer bisa memberi ketekunan pada curah hujan harian. Atau drainase yang lambat dari cadangan air tanah mungkin memberi korelasi dengan arus tahunan sungai yang berturut-turut. Atau fotosintat yang tersimpan mungkin memberi korelasi dengan nilai tahunan indeks cincin-pohon berturut-turut. Autokorelasi mempersulit penerapan uji statistik dengan mengurangi jumlah pengamatan independen. Autokorelasi juga dapat mempersulit identifikasi kovariansi signifikan atau korelasi antara deret waktu (misalnya presipitasi dengan deret pohon). Autokorelasi dapat dieksploitasi untuk prediksi: rangkaian waktu autokorelasi dapat diprediksi, probabilistik, karena nilai masa depan tergantung pada nilai arus dan masa lalu. Tiga alat untuk menilai autokorelasi deret waktu adalah (1) rangkaian deret waktu, (2) scatterplot yang tertinggal, dan (3) fungsi autokorelasi. Jawaban: Jalankan skrip geosa3.m dan jawab pertanyaan yang tercantum dalam file di a3.pdf Definisi: autokorelasi, ketekunan, korelasi serial, fungsi autokorelasi (acf), fungsi autocovariance (acvf), ukuran sampel efektif Bagaimana mengenali autokorelasi dalam deret waktu Plot Bagaimana menggunakan scatterplots yang tertinggal untuk menilai autokorelasi Bagaimana menafsirkan acf diplot Bagaimana menyesuaikan ukuran sampel untuk autokorelasi Definisi matematis dari fungsi autokorelasi Persyaratan yang mempengaruhi lebar pita kepercayaan dihitung dari acf Perbedaan antara satu sisi dan dua - dari uji autokorelasi lag-1 yang signifikan Bagaimana menerapkan geos3.m untuk mempelajari autokorelasi deret waktu Spektrum deret waktu adalah distribusi varians rangkaian sebagai fungsi frekuensi. Objek analisis spektral adalah untuk memperkirakan dan mempelajari spektrum. Spektrum tidak mengandung informasi baru selain fungsi autocovariance (acvf), dan kenyataannya spektrumnya dapat dihitung secara matematis dengan transformasi acvf. Tapi spektrum dan acvf menyajikan informasi tentang varians deret waktu dari sudut pandang komplementer. Acf merangkum informasi dalam domain waktu dan spektrum dalam domain frekuensi. Jawaban: Jalankan skrip geosa4.m dan jawab pertanyaan yang tercantum dalam file di a4.pdf Definisi: frekuensi, periode, panjang gelombang, spektrum, frekuensi Nyquist, frekuensi Fourier, bandwidth Alasan untuk menganalisis spektrum Bagaimana menafsirkan spektrum diplot dalam hal distribusi Varians Perbedaan antara spektrum dan spektrum normal Definisi jendela lag seperti yang digunakan dalam memperkirakan spektrum dengan metode Blackman-Tukey Bagaimana pilihan jendela lag mempengaruhi bandwidth dan varians spektrum perkiraan Bagaimana menentukan spektrum suara putih Dan spektrum autoregresif Bagaimana membuat sketsa beberapa bentuk spektral yang khas: white noise, autoregressive, quasi-periodic, frekuensi rendah, frekuensi tinggi Bagaimana cara menerapkan geosa4.m untuk menganalisis spektrum deret waktu dengan metode Blackman-Tukey Autoregressive-Moving Model rata-rata (ARMA) model Autoregressive-moving-average (ARMA) adalah model matematis dari ketekunan, atau autokorelasi, dalam deret waktu. Model ARMA banyak digunakan dalam hidrologi, dendrochronologi, ekonometri, dan bidang lainnya. Ada beberapa kemungkinan alasan pemasangan model ARMA pada data. Pemodelan dapat berkontribusi untuk memahami sistem fisik dengan mengungkapkan sesuatu tentang proses fisik yang membangun ketekunan ke dalam rangkaian. Sebagai contoh, model keseimbangan air fisik sederhana yang terdiri dari istilah untuk input presipitasi, penguapan, infiltrasi, dan penyimpanan air tanah dapat ditunjukkan untuk menghasilkan rangkaian aliran arus yang mengikuti bentuk model ARMA tertentu. Model ARMA juga bisa digunakan untuk memprediksi perilaku deret waktu dari nilai masa lalu saja. Prediksi tersebut dapat digunakan sebagai dasar untuk mengevaluasi kemungkinan kemungkinan variabel lain terhadap sistem. Model ARMA banyak digunakan untuk prediksi deret waktu ekonomi dan industri. Model ARMA juga bisa digunakan untuk menghilangkan ketekunan. Dalam dendrochronology, misalnya, pemodelan ARMA diterapkan secara rutin untuk menghasilkan kronik waktu residu indeks ring-width tanpa ketergantungan pada nilai masa lalu. Operasi ini, yang disebut prewhitening, dimaksudkan untuk menghilangkan kegigihan yang terkait secara biologis dari rangkaian sehingga residu lebih sesuai untuk mempelajari pengaruh iklim dan faktor lingkungan luar lainnya terhadap pertumbuhan pohon. Jawaban: Jalankan skrip geosa5.m dan jawablah pertanyaan yang tercantum dalam file di a5.pdf Bentuk fungsional model AR dan ARMA yang paling sederhana Mengapa model seperti itu disebut sebagai autoregressive atau moving average Tiga langkah dalam pemodelan ARMA Pola diagnostik dari Autokorelasi dan fungsi autokorelasi parsial untuk rangkaian waktu AR (1) Definisi kesalahan prediksi akhir (FPE) dan bagaimana FPE digunakan untuk memilih model ARMA terbaik Definisi statistik Portmanteau, dan bagaimana dan residu residu dapat Digunakan untuk menilai apakah model ARMA secara efektif memodelkan ketekunan dalam rangkaian Bagaimana prinsip parsimoni diterapkan dalam pemodelan ARMA Definisi prewhitening Bagaimana pengaruh sebelum perang mempengaruhi (1) kemunculan deret waktu, dan (2) spektrum deret waktu Bagaimana menerapkan geosa5.m ke ARMA-model rangkaian waktu Analisis spektral - Metode periodogram merapikan Ada banyak metode yang tersedia untuk memperkirakan spektrum deret waktu. Dalam pelajaran 4 kita melihat metode Blackman-Tukey, yang didasarkan pada transformasi Fourier dari fungsi autocovariance yang merapikan dan dipotong. Metode periodogram merapikan mengeliminasi transformasi acf dengan transformasi Fourier langsung dari deret waktu dan perhitungan periodogram mentah, sebuah fungsi yang pertama kali diperkenalkan pada tahun 1800 untuk mempelajari deret waktu. Periodogram mentah diratakan dengan menerapkan kombinasi atau rentang satu atau lebih filter untuk menghasilkan spektrum yang diperkirakan. Kelancaran, resolusi dan varians perkiraan spektral dikendalikan oleh pilihan filter. Pemulusan periodogram baku yang lebih ditekankan menghasilkan spektrum yang bervariasi, atau kontinum null yang mendasari, yang dengannya puncak spektral dapat diuji signifikansinya. Pendekatan ini adalah alternatif dari spesifikasi bentuk fungsional dari kontinum null (misalnya spektrum AR). Jawaban: Jalankan skrip geosa6.m dan jawab pertanyaan yang tercantum dalam file di a6.pdf Definisi: periodogram mentah, filter Daniell, rentang filter, kelancaran kontinuitas null, stabilitas dan resolusi spektrum meruncing, padding, kebocoran Empat langkah utama dalam memperkirakan Spektrum oleh periodogram yang merapikan Bagaimana pengaruh pilihan bentang filter pada kelancaran, stabilitas dan resolusi spektrum Bagaimana kontinum null digunakan dalam pengujian untuk kepentingan puncak spektral Bagaimana menerapkan geosa6.m untuk memperkirakan spektrum suatu waktu Seri dengan metode periodogram merapikan dan uji periodisitas pada frekuensi tertentu Tren dalam deret waktu adalah perubahan bertahap dan lambat dalam beberapa properti seri selama keseluruhan interval yang sedang diselidiki. Trend kadang-kadang didefinisikan secara longgar sebagai perubahan jangka panjang dalam mean (Gambar 7.1), namun juga dapat merujuk pada perubahan pada sifat statistik lainnya. Misalnya, rangkaian cincin pohon dari lebar cincin yang diukur sering memiliki kecenderungan yang berbeda dan juga mean (Gambar 7.2). Dalam analisis deret waktu tradisional, deret waktu didekomposisi menjadi tren, komponen musiman atau periodik, dan fluktuasi yang tidak teratur, dan berbagai bagian dipelajari secara terpisah. Teknik analisis modern sering memperlakukan seri tanpa dekomposisi rutin seperti itu, namun pertimbangan tren yang terpisah masih sering dibutuhkan. Detrending adalah operasi statistik atau matematis untuk menghilangkan tren dari rangkaian. Detrending sering diterapkan untuk menghilangkan fitur yang diduga mendistorsi atau mengaburkan hubungan yang diminati. Dalam klimatologi, misalnya, tren suhu akibat pemanasan kota mungkin mengaburkan hubungan antara keruh dan suhu udara. Detrending juga kadang-kadang digunakan sebagai langkah preprocessing untuk mempersiapkan time series untuk analisis dengan metode yang mengasumsikan stationarity. Banyak metode alternatif tersedia untuk detrending. Tren linier sederhana dalam mean dapat dihapus dengan mengurangkan garis lurus kuadrat terkecil. Tren yang lebih rumit mungkin memerlukan prosedur yang berbeda. Sebagai contoh, spline smoothing kubik biasanya digunakan dalam dendrochronology agar sesuai dan menghilangkan tren ring-width yang mungkin tidak linier, atau bahkan tidak meningkat secara monoton atau menurun seiring berjalannya waktu. Dalam mempelajari dan menghilangkan kecenderungan, penting untuk memahami efek detrending pada sifat spektral dari deret waktu. Efek ini dapat diringkas dengan respon frekuensi fungsi detrending. Jawaban: Jalankan skrip geosa7.m dan jawab pertanyaan yang tercantum dalam file di a7.pdf Definisi: respons frekuensi, spline, spline smoothing kubik Pro dan kontra rasio vs perbedaan detrending Interpretasi istilah dalam persamaan untuk parameter spline Bagaimana memilih spline interactively from desired frequency response How the spectrum is affected by detrending How to measure the importance of the trend component in a time series How to apply geosa7.m to interactively choose a spline detrending function and detrend a time series The estimated spectrum of a time series gives the distribution of variance as a function of frequency. Depending on the purpose of analysis, some frequencies may be of greater interest than others, and it may be helpful to reduce the amplitude of variations at other frequencies by statistically filtering them out before viewing and analyzing the series. For example, the high-frequency (year-to-year) variations in a gauged discharge record of a watershed may be relatively unimportant to water supply in a basin with large reservoirs that can store several years of mean annual runoff. Where low-frequency variations are of main interest, it is desirable to smooth the discharge record to eliminate or reduce the short-period fluctuations before using the discharge record to study the importance of climatic variations to water supply. Smoothing is a form of filtering which produces a time series in which the importance of the spectral components at high frequencies is reduced. Electrical engineers call this type of filter a low-pass filter, because the low-frequency variations are allowed to pass through the filter. In a low-pass filter, the low frequency (long-period) waves are barely affected by the smoothing. It is also possible to filter a series such that the low-frequency variations are reduced and the high-frequency variations unaffected. This type of filter is called a high-pass filter. Detrending is a form of high-pass filtering: the fitted trend line tracks the lowest frequencies, and the residuals from the trend line have had those low frequencies removed. A third type of filtering, called band-pass filtering, reduces or filters out both high and low frequencies, and leaves some intermediate frequency band relatively unaffected. In this lesson, we cover several methods of smoothing, or low-pass filtering. We have already discussed how the cubic smoothing spline might be useful for this purpose. Four other types of filters are discussed here: 1) simple moving average, 2) binomial, 3) Gaussian, and 4) windowing (Hamming method). Considerations in choosing a type of low-pass filter are the desired frequency response and the span, or width, of the filter. Answer: Run script geosa8.m and answer questions listed in the file in a8.pdf Definitions: filter, filter weights, filter span, low-pass filter, high-pass filter, band-pass filter frequency response of a filter How the Gaussian filter is related to the Gaussian distribution How to build a simple binomial filter manually (without the computer) How to describe the frequency response function in terms of a system with sinusoidal input and output How to apply geosa8.m to interactively design a Gaussian, binomial or Hamming-window lowpass filter for a time series The Pearson product-moment correlation coefficient is probably the single most widely used statistic for summarizing the relationship between two variables. Statistical significance and caveats of interpretation of the correlation coefficient as applied to time series are topics of this lesson. Under certain assumptions, the statistical significance of a correlation coefficient depends on just the sample size, defined as the number of independent observations. If time series are autocorrelated, an effective sample size, lower than the actual sample size, should be used when evaluating significance. Transient or spurious relationships can yield significant correlation for some periods and not for others. The time variation of strength of linear correlation can be examined with plots of correlation computed for a sliding window. But if many correlation coefficients are evaluated simultaneously, confidence intervals should be adjusted ( Bonferroni adjustment ) to compensate for the increased likelihood of observing some high correlations where no relationship exists. Interpretation of sliding correlations can be also be complicated by time variations of mean and variance of the series, as the sliding correlation reflects covariation in terms of standardized departures from means in the time window of interest, which may differ from the long-term means. Finally, it should be emphasized that the Pearson correlation coefficient measures strength of linear relationship. Scatterplots are useful for checking whether the relationship is linear. Answer: Run script geosa9.m and answer questions listed in the file in a9.pdf Mathematical definition of the correlation coefficient Assumptions and hypothesis for significance testing of correlation coefficient How to compute significance level of correlation coefficient and to adjust the significance level for autocorrelation in the individual time series Caveats to interpretation of correlation coefficient Bonferroni adjustment to signficance level of correlation under multiple comparisons Inflation of variance of estimated correlation coefficient when time series autocorrelated Possible effects of data transformation on correlation How to interpret plots of sliding correlations How to apply geosa9.m to analyze correlations and sliding correlations between pairs of time series Lagged relationships are characteristic of many natural physical systems. Lagged correlation refers to the correlation between two time series shifted in time relative to one another. Lagged correlation is important in studying the relationship between time series for two reasons. First, one series may have a delayed response to the other series, or perhaps a delayed response to a common stimulus that affects both series. Second, the response of one series to the other series or an outside stimulus may be smeared in time, such that a stimulus restricted to one observation elicits a response at multiple observations. For example, because of storage in reservoirs, glaciers, etc. the volume discharge of a river in one year may depend on precipitation in the several preceding years. Or because of changes in crown density and photosynthate storage, the width of a tree-ring in one year may depend on climate of several preceding years. The simple correlation coefficient between the two series properly aligned in time is inadequate to characterize the relationship in such situations. Useful functions we will examine as alternative to the simple correlation coefficient are the cross-correlation function and the impulse response function. The cross-correlation function is the correlation between the series shifted against one another as a function of number of observations of the offset. If the individual series are autocorrelated, the estimated cross-correlation function may be distorted and misleading as a measure of the lagged relationship. We will look at two approaches to clarifying the pattern of cross-correlations. One is to individually remove the persistence from, or prewhiten, the series before cross-correlation estimation. In this approach, the two series are essentially regarded on equal footing . An alternative is the systems approach: view the series as a dynamic linear system -- one series the input and the other the output -- and estimate the impulse response function. The impulse response function is the response of the output at current and future times to a hypothetical pulse of input restricted to the current time. Answer: Run script geosa10.m and answer questions listed in the file in a10.pdf Definitions: cross-covariance function, cross-correlation function, impulse response function, lagged correlation, causal, linear How autocorrelation can distort the pattern of cross-correlations and how prewhitening is used to clarify the pattern The distinction between the equal footing and systems approaches to lagged bivariate relationships Which types of situations the impulse response function (irf) is an appropriate tool How to represent the causal system treated by the irf in a flow diagram How to apply geos10.m to analyze the lagged cross-correlation structure of a a pair of time series Multiple linear regression Multiple linear regression (MLR) is a method used to model the linear relationship between a dependent variable and one or more independent variables. The dependent variable is sometimes also called the predictand, and the independent variables the predictors. MLR is based on least squares: the model is fit such that the sum-of-squares of differences of observed and predicted values is minimized. MLR is probably the most widely used method in dendroclimatology for developing models to reconstruct climate variables from tree-ring series. Typically, a climatic variable is defined as the predictand and tree-ring variables from one or more sites are defined as predictors. The model is fit to a period -- the calibration period -- for which climatic and tree-ring data overlap. In the process of fitting, or estimating, the model, statistics are computed that summarize the accuracy of the regression model for the calibration period. The performance of the model on data not used to fit the model is usually checked in some way by a process called validation. Finally, tree-ring data from before the calibration period are substituted into the prediction equation to get a reconstruction of the predictand. The reconstruction is a prediction in the sense that the regression model is applied to generate estimates of the predictand variable outside the period used to fit the data. The uncertainty in the reconstruction is summarized by confidence intervals, which can be computed by various alternative ways. Answer: Run script geosa11.m (Part 1) and answer questions listed in the file in a11.pdf The equation for the MLR model Assumptions for the MLR model Definitions of MLR statistics: coefficient of determination, sums-of-squares terms, overall-F for the regression equation, standard error of the estimate, adjusted R-squared, pool of potential predictors The steps in an analysis of residuals How to apply geosa11.m (part 1) to fit a MLR regression model to predict one variable from a set of several predictor variables Validating the regression model Regression R-squared, even if adjusted for loss of degrees of freedom due to the number of predictors in the model, can give a misleading, overly optimistic view of accuracy of prediction when the model is applied outside the calibration period. Application outside the calibration period is the rule rather than the exception in dendroclimatology. The calibration-period statistics are typically biased because the model is tuned for maximum agreement in the calibration period. Sometimes too large a pool of potential predictors is used in automated procedures to select final predictors. Another possible problem is that the calibration period itself may be anomalous in terms of the relationships between the variables: modeled relationships may hold up for some periods of time but not for others. It is advisable therefore to validate the regression model by testing the model on data not used to fit the model. Several approaches to validation are available. Among these are cross-validation and split-sample validation. In cross-validation, a series of regression models is fit, each time deleting a different observation from the calibration set and using the model to predict the predictand for the deleted observation. The merged series of predictions for deleted observations is then checked for accuracy against the observed data. In split-sample calibration, the model is fit to some portion of the data (say, the second half), and accuracy is measured on the predictions for the other half of the data. The calibration and validation periods are then exchanged and the process repeated. In any regression problem it is also important to keep in mind that modeled relationships may not be valid for periods when the predictors are outside their ranges for the calibration period: the multivariate distribution of the predictors for some observations outside the calibration period may have no analog in the calibration period. The distinction of predictions as extrapolations versus interpolations is useful in flagging such occurrences. Answer: Run script geosa11.m (Part 2) and answer questions listed in the file in a12.pdf Definitions: validation, cross-validation, split-sample validation, mean square error (MSE), root-mean-square error (RMSE) standard error of prediction, PRESS statistic, hat matrix, extrapolation vs interpolation Advantages of cross-validation over alternative validation methods How to apply geosa11.m (part 2) for cross-validated MLR modeling of the relationship between a predictand and predictors, including generation of a reconstruction and confidence bands Downloading Files -- tsfiles. zip The Matlab class scripts and user-written functions are zipped in a file called tsfiles. zip. To get the files, first create an empty directory on your computer. This is where you will store all functions, scripts and data used in the course. Go to D2L, or click on tsfiles. zip to download the zip file to that directory and unzip it there. When you run matlab, be sure that directory is your current matlab working directory. Powerpoint lecture outlines miscellaneous files. Downloadable file other. zip has miscellaneous files used in lectures. Included are Matlab demo scripts, sample data files, user-written functions used by demo scripts, and powerpoint presentations, as pdfs (lect1a. pdf, lect1b. pdf, etc.) used in on-campus lectures. I update other. zip over the semester, and add the presentation for the current lecture within a couple of days after that lecture is given. To run the Matlab scripts for the assignments, you must have your data, the class scripts, and the user-written Matlab functions called by the scripts in a single directory on your computer. The name of this directory is unimportant. Under Windows, it might be something like C:geos585a. The functions and scripts provided for the course should not require any tailoring, but some changes can be made for convenience. For example, scripts and functions will typically prompt you for the name of your input data file and present Spring17 as the default. That is because Ive stored the sample data in Spring17.mat. If you want to avoid having to type over Spring17 with the name of your own data file each time you run the script, edit the matlab script with the Matlab editordebugger to change one line. In the editor, search for the string Spring17 and replace it with the name of your. mat storage file (e. g. Smith2017), then be sure to re-save the edited script.

No comments:

Post a Comment